Mathematics Standards
Results
Showing 21 - 30 of 75 Standards
Standard Identifier: A-SSE.2
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Standard Identifier: A-SSE.3.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Standard Identifier: A-SSE.3.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Standard Identifier: A-SSE.3.c
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Standard Identifier: G-CO.1
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.12
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Showing 21 - 30 of 75 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881