Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Number and Operations—Fractions
Remove this criterion from the search
Operations and Algebraic Thinking
Remove this criterion from the search
Seeing Structure in Expressions
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Results
Showing 11 - 20 of 38 Standards
Standard Identifier: A-SSE.1.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Standard Identifier: A-SSE.1.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)^n as the product of P and a factor not depending on P. *
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)^n as the product of P and a factor not depending on P. *
Standard Identifier: A-SSE.2
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Standard Identifier: A-SSE.3.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Standard Identifier: A-SSE.3.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Standard Identifier: A-SSE.3.c
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Showing 11 - 20 of 38 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881