Mathematics Standards
Remove this criterion from the search
Circles
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Reasoning with Equations and Inequalities
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Results
Showing 91 - 100 of 162 Standards
Standard Identifier: 8.EE.8.c
Grade:
8
Domain:
Expressions and Equations
Cluster:
Analyze and solve linear equations and pairs of simultaneous linear equations.
Standard:
Analyze and solve pairs of simultaneous linear equations. Solve real-world and mathematical problems leading to to linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
Analyze and solve linear equations and pairs of simultaneous linear equations.
Standard:
Analyze and solve pairs of simultaneous linear equations. Solve real-world and mathematical problems leading to to linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
Standard Identifier: A-REI.4.a
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Standard Identifier: A-REI.4.b
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Standard Identifier: A-REI.7
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Standard Identifier: G-C.1
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Prove that all circles are similar.
Understand and apply theorems about circles.
Standard:
Prove that all circles are similar.
Standard Identifier: G-C.1
Grade Range:
8–12
Domain:
Circles
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Prove that all circles are similar.
Understand and apply theorems about circles.
Standard:
Prove that all circles are similar.
Standard Identifier: G-C.2
Grade Range:
8–12
Domain:
Circles
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Understand and apply theorems about circles.
Standard:
Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Standard Identifier: G-C.2
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Understand and apply theorems about circles.
Standard:
Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Standard Identifier: G-C.3
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Understand and apply theorems about circles.
Standard:
Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Standard Identifier: G-C.3
Grade Range:
8–12
Domain:
Circles
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Understand and apply theorems about circles.
Standard:
Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Showing 91 - 100 of 162 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881