Mathematics Standards
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Functions
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Reasoning with Equations and Inequalities
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Results
Showing 51 - 60 of 122 Standards
Standard Identifier: 8.F.2
Grade:
8
Domain:
Functions
Cluster:
Define, evaluate, and compare functions.
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
Define, evaluate, and compare functions.
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
Standard Identifier: 8.F.3
Grade:
8
Domain:
Functions
Cluster:
Define, evaluate, and compare functions.
Standard:
Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s^2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
Define, evaluate, and compare functions.
Standard:
Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s^2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
Standard Identifier: 8.F.4
Grade:
8
Domain:
Functions
Cluster:
Use functions to model relationships between quantities.
Standard:
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
Use functions to model relationships between quantities.
Standard:
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
Standard Identifier: 8.F.5
Grade:
8
Domain:
Functions
Cluster:
Use functions to model relationships between quantities.
Standard:
Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
Use functions to model relationships between quantities.
Standard:
Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
Standard Identifier: A-REI.4.a
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Standard Identifier: A-REI.4.b
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Standard Identifier: A-REI.7
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Standard Identifier: F-BF.1.a
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Standard Identifier: F-BF.1.b
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. *
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. *
Standard Identifier: F-BF.3
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Showing 51 - 60 of 122 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881