Mathematics Standards
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Congruence
Remove this criterion from the search
Geometric Measurement and Dimension
Remove this criterion from the search
Interpreting Categorical and Quantitative Data
Remove this criterion from the search
Statistics and Probability
Results
Showing 21 - 30 of 30 Standards
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-GMD.1
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Explain volume formulas and use them to solve problems.
Standard:
Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.
Explain volume formulas and use them to solve problems.
Standard:
Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.
Standard Identifier: G-GMD.3
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Explain volume formulas and use them to solve problems.
Standard:
Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. *
Explain volume formulas and use them to solve problems.
Standard:
Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. *
Standard Identifier: G-GMD.5
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k^2, and k^3, respectively; determine length, area and volume measures using scale factors. CA
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k^2, and k^3, respectively; determine length, area and volume measures using scale factors. CA
Standard Identifier: G-GMD.6
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve realworld and mathematical problems. CA
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve realworld and mathematical problems. CA
Standard Identifier: F-BF.1.b
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [Include all types of functions studied.]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Build a function that models a relationship between two quantities. [Include all types of functions studied.]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Standard Identifier: F-BF.3
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.4.a
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Standard Identifier: S-ID.4
Grade Range:
9–12
Domain:
Interpreting Categorical and Quantitative Data
Discipline:
Algebra II
Conceptual Category:
Statistics and Probability
Cluster:
Summarize, represent, and interpret data on a single count or measurement variable.
Standard:
Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. *
Summarize, represent, and interpret data on a single count or measurement variable.
Standard:
Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. *
Showing 21 - 30 of 30 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881