Mathematics Standards
Results
Showing 31 - 40 of 70 Standards
Standard Identifier: 8.SP.3
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Standard Identifier: 8.SP.4
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Standard Identifier: F-BF.1.a
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Standard Identifier: F-BF.1.b
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. *
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. *
Standard Identifier: F-BF.3
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.4.a
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3.
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3.
Standard Identifier: N-CN.1
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Standard Identifier: N-CN.8
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Showing 31 - 40 of 70 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881