Mathematics Standards
Results
Showing 81 - 90 of 98 Standards
Standard Identifier: G-SRT.7
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Explain and use the relationship between the sine and cosine of complementary angles.
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Explain and use the relationship between the sine and cosine of complementary angles.
Standard Identifier: G-SRT.7
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Explain and use the relationship between the sine and cosine of complementary angles.
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Explain and use the relationship between the sine and cosine of complementary angles.
Standard Identifier: G-SRT.8
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *
Standard Identifier: G-SRT.8
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *
Standard Identifier: G-SRT.8.1
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA
Standard Identifier: G-SRT.8.1
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA
Standard Identifier: G-SRT.9
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply trigonometry to general triangles.
Standard:
(+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Apply trigonometry to general triangles.
Standard:
(+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Standard Identifier: F-LE.4
Grade Range:
9–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
Standard Identifier: F-LE.4
Grade Range:
9–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
Standard Identifier: F-LE.4.1
Grade Range:
9–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Prove simple laws of logarithms. CA *
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Prove simple laws of logarithms. CA *
Showing 81 - 90 of 98 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881