Mathematics Standards
Remove this criterion from the search
Add a Domain
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Counting and Cardinality
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Geometric Measurement and Dimension
Remove this criterion from the search
Number and Operations in Base Ten
Remove this criterion from the search
Statistics and Probability
Remove this criterion from the search
The Complex Number System
Remove this criterion from the search
The Real Number System
Remove this criterion from the search
Trigonometric Functions
Results
Showing 1 - 10 of 16 Standards
Standard Identifier: G-GPE.4
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.5
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: N-RN.1
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: G-GMD.4
Grade Range:
9–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
Standard Identifier: G-GPE.3.1
Grade Range:
9–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Algebra II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Standard Identifier: G-GPE.3.1
Grade Range:
9–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Standard Identifier: N-CN.1
Grade Range:
9–12
Domain:
The Complex Number System
Discipline:
Algebra II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers.
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers.
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Showing 1 - 10 of 16 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881