Mathematics Standards
Results
Showing 41 - 50 of 72 Standards
Standard Identifier: 8.SP.3
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Standard Identifier: 8.SP.4
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Standard Identifier: A-REI.4.a
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Standard Identifier: A-REI.4.b
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Standard Identifier: A-REI.7
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: N-CN.1
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Standard Identifier: N-CN.8
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Showing 41 - 50 of 72 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881