Mathematics Standards
Results
Showing 11 - 20 of 50 Standards
Standard Identifier: A-SSE.2
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Standard Identifier: A-SSE.3.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Standard Identifier: A-SSE.3.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Standard Identifier: A-SSE.3.c
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Standard Identifier: N-CN.1
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Standard Identifier: N-CN.8
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Standard Identifier: N-CN.9
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Standard Identifier: S-MD.6
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Showing 11 - 20 of 50 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881