Mathematics Standards
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Congruence
Remove this criterion from the search
Seeing Structure in Expressions
Remove this criterion from the search
The Complex Number System
Remove this criterion from the search
Using Probability to Make Decisions
Results
Showing 21 - 30 of 103 Standards
Standard Identifier: A-SSE.2
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Standard Identifier: A-SSE.3.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Standard Identifier: A-SSE.3.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Standard Identifier: A-SSE.3.c
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Standard Identifier: G-CO.1
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.12
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Showing 21 - 30 of 103 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881