Mathematics Standards
Remove this criterion from the search
Circles
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Counting and Cardinality
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Modeling with Geometry
Remove this criterion from the search
The Complex Number System
Results
Showing 1 - 10 of 17 Standards
Standard Identifier: G-GPE.4
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.5
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: G-GPE.3.1
Grade Range:
9–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Standard Identifier: G-GPE.3.1
Grade Range:
9–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Algebra II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Standard Identifier: G-MG.1
Grade Range:
9–12
Domain:
Modeling with Geometry
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Standard Identifier: G-MG.2
Grade Range:
9–12
Domain:
Modeling with Geometry
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Standard Identifier: G-MG.3
Grade Range:
9–12
Domain:
Modeling with Geometry
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Standard Identifier: S-CP.1
Grade Range:
10–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Statistics and Probability
Conceptual Category:
Statistics and Probability
Cluster:
Understand independence and conditional probability and use them to interpret data.
Standard:
Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”). *
Understand independence and conditional probability and use them to interpret data.
Standard:
Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”). *
Standard Identifier: S-CP.2
Grade Range:
10–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Statistics and Probability
Conceptual Category:
Statistics and Probability
Cluster:
Understand independence and conditional probability and use them to interpret data.
Standard:
Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. *
Understand independence and conditional probability and use them to interpret data.
Standard:
Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. *
Showing 1 - 10 of 17 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881