Mathematics Standards
Results
Showing 51 - 60 of 87 Standards
Standard Identifier: F-IF.8.a
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Standard Identifier: F-IF.8.b
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Standard Identifier: F-IF.9
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Standard Identifier: G-MG.1
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Standard Identifier: G-MG.2
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Standard Identifier: G-MG.3
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Standard Identifier: N-CN.1
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Standard Identifier: N-CN.8
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Showing 51 - 60 of 87 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881