Mathematics Standards
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Congruence
Remove this criterion from the search
Number and Operations in Base Ten
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
The Number System
Results
Showing 71 - 80 of 132 Standards
Standard Identifier: G-CO.13
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Make geometric constructions. [Formalize and explain processes.]
Standard:
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Make geometric constructions. [Formalize and explain processes.]
Standard:
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Standard Identifier: G-CO.2
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Experiment with transformations in the plane.
Standard:
Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Standard Identifier: G-CO.3
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
Experiment with transformations in the plane.
Standard:
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
Standard Identifier: G-CO.4
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Experiment with transformations in the plane.
Standard:
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Standard Identifier: G-CO.5
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Experiment with transformations in the plane.
Standard:
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Standard Identifier: G-CO.6
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standard Identifier: G-CO.7
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: 8.NS.1
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Standard Identifier: 8.NS.2
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Showing 71 - 80 of 132 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881