Mathematics Standards
Results
Showing 31 - 39 of 39 Standards
Standard Identifier: G-GPE.2
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Standard Identifier: G-GPE.5
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: G-GPE.7
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: G-GPE.3.1
Grade Range:
9–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Algebra II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Standard Identifier: G-GPE.3.1
Grade Range:
9–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Translate between the geometric description and the equation for a conic section.
Standard:
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify whether the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. [In Algebra II, this standard addresses only circles and parabolas.] CA
Showing 31 - 39 of 39 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881