Mathematics Standards
Results
        Showing 51 - 60 of 75 Standards
    
        Standard Identifier: N-RN.1
                    Grade Range:
                    
                        7–12
                    
                
            
                        Domain:
                        
                            The Real Number System
                        
                    
                    
                        Discipline:
                        
                            Algebra I
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
                Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
                    Grade Range:
                    
                        7–12
                    
                
            
                        Domain:
                        
                            The Real Number System
                        
                    
                    
                        Discipline:
                        
                            Algebra I
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
                Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
                    Grade Range:
                    
                        7–12
                    
                
            
                        Domain:
                        
                            The Real Number System
                        
                    
                    
                        Discipline:
                        
                            Algebra I
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
                Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: 8.G.1.a
                    Grade:
                    
                        8
                    
                
            
                        Domain:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
                Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Standard Identifier: 8.G.1.b
                    Grade:
                    
                        8
                    
                
            
                        Domain:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
                Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Standard Identifier: 8.G.1.c
                    Grade:
                    
                        8
                    
                
            
                        Domain:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
                Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Standard Identifier: 8.G.2
                    Grade:
                    
                        8
                    
                
            
                        Domain:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
                Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Standard Identifier: 8.G.3
                    Grade:
                    
                        8
                    
                
            
                        Domain:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
                Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Standard Identifier: 8.G.4
                    Grade:
                    
                        8
                    
                
            
                        Domain:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
                Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Standard Identifier: 8.G.5
                    Grade:
                    
                        8
                    
                
            
                        Domain:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
                Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
        Showing 51 - 60 of 75 Standards
    
        
                Questions: Curriculum Frameworks and Instructional Resources Division |
                CFIRD@cde.ca.gov | 916-319-0881
            
            
        