Mathematics Standards
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Reasoning with Equations and Inequalities
Remove this criterion from the search
The Real Number System
Results
Showing 111 - 120 of 132 Standards
Standard Identifier: S-CP.6
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model. *
Standard Identifier: S-CP.6
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model. *
Standard Identifier: S-CP.7
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.7
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.8
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.8
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.9
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Standard Identifier: S-CP.9
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Standard Identifier: A-REI.11
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Standard Identifier: A-REI.11
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Showing 111 - 120 of 132 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881