Mathematics Standards
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Geometry
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
The Real Number System
Results
Showing 111 - 120 of 147 Standards
Standard Identifier: 8.G.3
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Standard Identifier: 8.G.4
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Standard Identifier: 8.G.5
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
Standard Identifier: 8.G.6
Grade:
8
Domain:
Geometry
Cluster:
Understand and apply the Pythagorean Theorem.
Standard:
Explain a proof of the Pythagorean Theorem and its converse.
Understand and apply the Pythagorean Theorem.
Standard:
Explain a proof of the Pythagorean Theorem and its converse.
Standard Identifier: 8.G.7
Grade:
8
Domain:
Geometry
Cluster:
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
Standard Identifier: 8.G.8
Grade:
8
Domain:
Geometry
Cluster:
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
Standard Identifier: 8.G.9
Grade:
8
Domain:
Geometry
Cluster:
Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Standard:
Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Standard:
Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
Standard Identifier: N-RN.1
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Showing 111 - 120 of 147 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881