Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Creating Equations
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Geometric Measurement and Dimension
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
The Real Number System
Results
Showing 21 - 30 of 131 Standards
Standard Identifier: A-CED.2
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. *
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. *
Standard Identifier: A-CED.3
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Standard Identifier: A-CED.3
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Standard Identifier: A-CED.4
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Standard Identifier: A-CED.4
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Standard Identifier: N-RN.1
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: 8.EE.1
Grade:
8
Domain:
Expressions and Equations
Cluster:
Work with radicals and integer exponents.
Standard:
Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3^2 × 3^-5 = 3^-3 = 1/3^3 = 1/27.
Work with radicals and integer exponents.
Standard:
Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3^2 × 3^-5 = 3^-3 = 1/3^3 = 1/27.
Standard Identifier: 8.EE.2
Grade:
8
Domain:
Expressions and Equations
Cluster:
Work with radicals and integer exponents.
Standard:
Use square root and cube root symbols to represent solutions to equations of the form x^2 = p and x^3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.
Work with radicals and integer exponents.
Standard:
Use square root and cube root symbols to represent solutions to equations of the form x^2 = p and x^3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.
Showing 21 - 30 of 131 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881