Mathematics Standards
Results
Showing 61 - 70 of 102 Standards
Standard Identifier: 8.G.6
Grade:
8
Domain:
Geometry
Cluster:
Understand and apply the Pythagorean Theorem.
Standard:
Explain a proof of the Pythagorean Theorem and its converse.
Understand and apply the Pythagorean Theorem.
Standard:
Explain a proof of the Pythagorean Theorem and its converse.
Standard Identifier: 8.G.7
Grade:
8
Domain:
Geometry
Cluster:
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
Standard Identifier: 8.G.8
Grade:
8
Domain:
Geometry
Cluster:
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
Understand and apply the Pythagorean Theorem.
Standard:
Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
Standard Identifier: 8.G.9
Grade:
8
Domain:
Geometry
Cluster:
Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Standard:
Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Standard:
Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
Standard Identifier: A-REI.4.a
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Standard Identifier: A-REI.4.b
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Standard Identifier: A-REI.7
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Standard Identifier: N-RN.1
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Showing 61 - 70 of 102 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881