Mathematics Standards
        
            
                
                Remove this criterion from the search
                Conditional Probability and the Rules of Probability
            
        
        
            
                
                Remove this criterion from the search
                Congruence
            
        
        
            
                
                Remove this criterion from the search
                Number and Operations—Fractions
            
        
        
            
                
                Remove this criterion from the search
                Reasoning with Equations and Inequalities
            
        
        
            
                
                Remove this criterion from the search
                The Real Number System
            
        
            
        Results
        Showing 61 - 70 of 116 Standards
    
        Standard Identifier: N-RN.2
                    Grade Range:
                    
                        7–12
                    
                
            
                        Domain:
                        
                            The Real Number System
                        
                    
                    
                        Discipline:
                        
                            Algebra I
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
                Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
                    Grade Range:
                    
                        7–12
                    
                
            
                        Domain:
                        
                            The Real Number System
                        
                    
                    
                        Discipline:
                        
                            Algebra I
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
                Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: A-REI.4.a
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Reasoning with Equations and Inequalities
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Algebra
                        
                    
            Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
                Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Standard Identifier: A-REI.4.b
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Reasoning with Equations and Inequalities
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Algebra
                        
                    
            Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
                Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Standard Identifier: A-REI.7
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Reasoning with Equations and Inequalities
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Algebra
                        
                    
            Cluster:
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
                Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Standard Identifier: G-CO.1
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Geometry
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
                Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Standard Identifier: G-CO.10
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Geometry
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.10
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.11
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Geometry
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
        Showing 61 - 70 of 116 Standards
    
        
                Questions: Curriculum Frameworks and Instructional Resources Division |
                CFIRD@cde.ca.gov | 916-319-0881
            
            
        