Mathematics Standards
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Congruence
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
The Real Number System
Remove this criterion from the search
Using Probability to Make Decisions
Results
Showing 41 - 50 of 108 Standards
Standard Identifier: G-CO.6
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standard Identifier: G-CO.7
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-GPE.1
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Standard Identifier: G-GPE.1
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Standard Identifier: G-GPE.2
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Standard Identifier: G-GPE.2
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Showing 41 - 50 of 108 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881