Mathematics Standards
Results
Showing 11 - 20 of 48 Standards
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Standard Identifier: F-LE.6
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: G-GPE.4
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.5
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: F-LE.3
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Standard Identifier: F-LE.6
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: G-GPE.1
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Showing 11 - 20 of 48 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881