Mathematics Standards
Results
Showing 61 - 70 of 75 Standards
Standard Identifier: N-Q.2
Grade Range:
7–12
Domain:
Quantities
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling.*
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling.*
Standard Identifier: N-Q.3
Grade Range:
7–12
Domain:
Quantities
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Standard Identifier: N-Q.3
Grade Range:
7–12
Domain:
Quantities
Discipline:
Math I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Standard Identifier: 8.NS.1
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Standard Identifier: 8.NS.2
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.2
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard Identifier: F-TF.2
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Showing 61 - 70 of 75 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881