Mathematics Standards
Results
Showing 1 - 10 of 22 Standards
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: N-CN.1
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Standard Identifier: N-CN.8
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Standard Identifier: N-CN.9
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.2
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard Identifier: F-TF.2
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Showing 1 - 10 of 22 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881