Mathematics Standards
Results
Showing 11 - 20 of 38 Standards
Standard Identifier: 7.RP.2.d
Grade:
7
Domain:
Ratios and Proportional Relationships
Cluster:
Analyze proportional relationships and use them to solve real-world and mathematical problems.
Standard:
Recognize and represent proportional relationships between quantities. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.
Analyze proportional relationships and use them to solve real-world and mathematical problems.
Standard:
Recognize and represent proportional relationships between quantities. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.
Standard Identifier: 7.RP.3
Grade:
7
Domain:
Ratios and Proportional Relationships
Cluster:
Analyze proportional relationships and use them to solve real-world and mathematical problems.
Standard:
Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
Analyze proportional relationships and use them to solve real-world and mathematical problems.
Standard:
Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: S-MD.6
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Standard Identifier: S-MD.6
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Standard Identifier: S-MD.7
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Standard Identifier: S-MD.7
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.2
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Showing 11 - 20 of 38 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881