Mathematics Standards
Remove this criterion from the search
Congruence
Remove this criterion from the search
Quantities
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
Statistics and Probability
Remove this criterion from the search
Using Probability to Make Decisions
Results
Showing 21 - 30 of 97 Standards
Standard Identifier: G-CO.12
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Standard Identifier: G-CO.13
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Make geometric constructions. [Formalize and explain processes.]
Standard:
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Make geometric constructions. [Formalize and explain processes.]
Standard:
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Standard Identifier: G-CO.2
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Experiment with transformations in the plane.
Standard:
Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Standard Identifier: G-CO.3
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
Experiment with transformations in the plane.
Standard:
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
Standard Identifier: G-CO.4
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Experiment with transformations in the plane.
Standard:
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Standard Identifier: G-CO.5
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Experiment with transformations in the plane.
Standard:
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Standard Identifier: G-CO.6
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standard Identifier: G-CO.7
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: N-Q.1
Grade Range:
7–12
Domain:
Quantities
Discipline:
Math I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. *
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. *
Showing 21 - 30 of 97 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881