Skip to main content
California Department of Education Logo

Mathematics Standards




Results


Showing 61 - 70 of 88 Standards

Standard Identifier: G-CO.7

Grade Range: 8–12
Domain: Congruence
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]

Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

Standard Identifier: G-CO.8

Grade Range: 8–12
Domain: Congruence
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]

Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Standard Identifier: G-CO.9

Grade Range: 8–12
Domain: Congruence
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.

Standard Identifier: G-CO.9

Grade Range: 8–12
Domain: Congruence
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.

Standard Identifier: S-MD.6

Grade Range: 8–12
Domain: Using Probability to Make Decisions
Discipline: Geometry
Conceptual Category: Statistics and Probability

Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *

Standard Identifier: S-MD.6

Grade Range: 8–12
Domain: Using Probability to Make Decisions
Discipline: Math II
Conceptual Category: Statistics and Probability

Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *

Standard Identifier: S-MD.7

Grade Range: 8–12
Domain: Using Probability to Make Decisions
Discipline: Math II
Conceptual Category: Statistics and Probability

Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *

Standard Identifier: S-MD.7

Grade Range: 8–12
Domain: Using Probability to Make Decisions
Discipline: Geometry
Conceptual Category: Statistics and Probability

Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *

Standard Identifier: F-LE.4

Grade Range: 9–12
Domain: Linear, Quadratic, and Exponential Models
Discipline: Algebra II
Conceptual Category: Functions

Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.

Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]

Standard Identifier: F-LE.4

Grade Range: 9–12
Domain: Linear, Quadratic, and Exponential Models
Discipline: Math III
Conceptual Category: Functions

Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.

Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]

Showing 61 - 70 of 88 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881