Mathematics Standards
Remove this criterion from the search
Congruence
Remove this criterion from the search
Counting and Cardinality
Remove this criterion from the search
Making Inferences and Justifying Conclusions
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Reasoning with Equations and Inequalities
Results
Showing 101 - 110 of 125 Standards
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: A-REI.11
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Standard Identifier: A-REI.11
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Standard Identifier: A-REI.2
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]
Standard:
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]
Standard:
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Standard Identifier: A-REI.2
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]
Standard:
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]
Standard:
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Standard Identifier: A-REI.3.1
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable.
Standard:
Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in context. CA
Solve equations and inequalities in one variable.
Standard:
Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in context. CA
Standard Identifier: S-IC.1
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Algebra II
Conceptual Category:
Statistics and Probability
Cluster:
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Standard Identifier: S-IC.1
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Math III
Conceptual Category:
Statistics and Probability
Cluster:
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Standard Identifier: S-IC.2
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Math III
Conceptual Category:
Statistics and Probability
Cluster:
Understand and evaluate random processes underlying statistical experiments.
Standard:
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? *
Understand and evaluate random processes underlying statistical experiments.
Standard:
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? *
Showing 101 - 110 of 125 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881