Mathematics Standards
Results
Showing 61 - 70 of 141 Standards
Standard Identifier: G-CO.7
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: 8.G.1.a
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Standard Identifier: 8.G.1.b
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Standard Identifier: 8.G.1.c
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Standard Identifier: 8.G.2
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Standard Identifier: 8.G.3
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Standard Identifier: 8.G.4
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Standard Identifier: 8.G.5
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
Standard Identifier: 8.G.6
Grade:
8
Domain:
Geometry
Cluster:
Understand and apply the Pythagorean Theorem.
Standard:
Explain a proof of the Pythagorean Theorem and its converse.
Understand and apply the Pythagorean Theorem.
Standard:
Explain a proof of the Pythagorean Theorem and its converse.
Showing 61 - 70 of 141 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881