Mathematics Standards
        
            
                
                Remove this criterion from the search
                Congruence
            
        
        
            
                
                Remove this criterion from the search
                Modeling with Geometry
            
        
        
            
                
                Remove this criterion from the search
                Similarity, Right Triangles, and Trigonometry
            
        
        
            
                
                Remove this criterion from the search
                The Complex Number System
            
        
        
            
                
                Remove this criterion from the search
                The Real Number System
            
        
            
        Results
        Showing 1 - 10 of 21 Standards
    
        Standard Identifier: G-CO.10
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.9
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-SRT.1.a
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Similarity, Right Triangles, and Trigonometry
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
                Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
Standard Identifier: G-SRT.1.b
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Similarity, Right Triangles, and Trigonometry
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
                Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Standard Identifier: G-SRT.2
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Similarity, Right Triangles, and Trigonometry
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
                Understand similarity in terms of similarity transformations.
Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Standard Identifier: G-SRT.3
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Similarity, Right Triangles, and Trigonometry
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.
                Understand similarity in terms of similarity transformations.
Standard:
Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.
Standard Identifier: G-SRT.4
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Similarity, Right Triangles, and Trigonometry
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally and conversely; the Pythagorean Theorem proved using triangle similarity.
                Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally and conversely; the Pythagorean Theorem proved using triangle similarity.
Standard Identifier: G-SRT.5
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Similarity, Right Triangles, and Trigonometry
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
                Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standard Identifier: G-SRT.6
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Similarity, Right Triangles, and Trigonometry
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
                Define trigonometric ratios and solve problems involving right triangles.
Standard:
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
        Showing 1 - 10 of 21 Standards
    
        
                Questions: Curriculum Frameworks and Instructional Resources Division |
                CFIRD@cde.ca.gov | 916-319-0881
            
            
        