Mathematics Standards
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Circles
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Quantities
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Results
Showing 1 - 10 of 34 Standards
Standard Identifier: F-BF.1.a
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Standard Identifier: F-BF.1.b
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Standard Identifier: F-BF.2
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
Standard Identifier: F-BF.3
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Linear and exponential; focus on vertical translations for exponential.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Linear and exponential; focus on vertical translations for exponential.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: G-GPE.4
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.5
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: N-Q.1
Grade Range:
7–12
Domain:
Quantities
Discipline:
Math I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. *
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. *
Standard Identifier: N-Q.2
Grade Range:
7–12
Domain:
Quantities
Discipline:
Math I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling. *
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling. *
Standard Identifier: N-Q.3
Grade Range:
7–12
Domain:
Quantities
Discipline:
Math I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Showing 1 - 10 of 34 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881