Mathematics Standards
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Reasoning with Equations and Inequalities
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
The Real Number System
Results
Showing 31 - 40 of 131 Standards
Standard Identifier: A-REI.5
Grade Range:
7–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-linear and linear-quadratic]
Standard:
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
Solve systems of equations. [Linear-linear and linear-quadratic]
Standard:
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
Standard Identifier: A-REI.5
Grade Range:
7–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear systems]
Standard:
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
Solve systems of equations. [Linear systems]
Standard:
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
Standard Identifier: A-REI.6
Grade Range:
7–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear systems]
Standard:
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Solve systems of equations. [Linear systems]
Standard:
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Standard Identifier: A-REI.6
Grade Range:
7–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-linear and linear-quadratic]
Standard:
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Solve systems of equations. [Linear-linear and linear-quadratic]
Standard:
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Standard Identifier: A-REI.7
Grade Range:
7–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-linear and linear-quadratic]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.
Solve systems of equations. [Linear-linear and linear-quadratic]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.3
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Showing 31 - 40 of 131 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881