Skip to main content
California Department of Education Logo

Mathematics Standards




Results


Showing 81 - 90 of 140 Standards

Standard Identifier: 8.EE.8.b

Grade: 8
Domain: Expressions and Equations

Cluster:
Analyze and solve linear equations and pairs of simultaneous linear equations.

Standard:
Analyze and solve pairs of simultaneous linear equations. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.

Standard Identifier: 8.EE.8.c

Grade: 8
Domain: Expressions and Equations

Cluster:
Analyze and solve linear equations and pairs of simultaneous linear equations.

Standard:
Analyze and solve pairs of simultaneous linear equations. Solve real-world and mathematical problems leading to to linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Standard Identifier: 8.F.1

Grade: 8
Domain: Functions

Cluster:
Define, evaluate, and compare functions.

Standard:
Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

Footnote:
Function notation is not required in grade 8.

Standard Identifier: 8.F.2

Grade: 8
Domain: Functions

Cluster:
Define, evaluate, and compare functions.

Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

Standard Identifier: 8.F.3

Grade: 8
Domain: Functions

Cluster:
Define, evaluate, and compare functions.

Standard:
Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s^2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Standard Identifier: 8.F.4

Grade: 8
Domain: Functions

Cluster:
Use functions to model relationships between quantities.

Standard:
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Standard Identifier: 8.F.5

Grade: 8
Domain: Functions

Cluster:
Use functions to model relationships between quantities.

Standard:
Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Standard Identifier: G-CO.1

Grade Range: 8–12
Domain: Congruence
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Experiment with transformations in the plane.

Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Standard Identifier: G-CO.10

Grade Range: 8–12
Domain: Congruence
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Standard Identifier: G-CO.10

Grade Range: 8–12
Domain: Congruence
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Showing 81 - 90 of 140 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881