Skip to main content
California Department of Education Logo

Mathematics Standards




Results


Showing 1 - 10 of 18 Standards

Standard Identifier: A-REI.4.a

Grade Range: 8–12
Domain: Reasoning with Equations and Inequalities
Discipline: Math II
Conceptual Category: Algebra

Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]

Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.

Standard Identifier: A-REI.4.b

Grade Range: 8–12
Domain: Reasoning with Equations and Inequalities
Discipline: Math II
Conceptual Category: Algebra

Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]

Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.

Standard Identifier: A-REI.7

Grade Range: 8–12
Domain: Reasoning with Equations and Inequalities
Discipline: Math II
Conceptual Category: Algebra

Cluster:
Solve systems of equations. [Linear-quadratic systems]

Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.

Standard Identifier: G-CO.10

Grade Range: 8–12
Domain: Congruence
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Standard Identifier: G-CO.11

Grade Range: 8–12
Domain: Congruence
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Standard Identifier: G-CO.9

Grade Range: 8–12
Domain: Congruence
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.

Standard Identifier: N-RN.1

Grade Range: 8–12
Domain: The Real Number System
Discipline: Math II
Conceptual Category: Number and Quantity

Cluster:
Extend the properties of exponents to rational exponents.

Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.

Standard Identifier: N-RN.2

Grade Range: 8–12
Domain: The Real Number System
Discipline: Math II
Conceptual Category: Number and Quantity

Cluster:
Extend the properties of exponents to rational exponents.

Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Standard Identifier: N-RN.3

Grade Range: 8–12
Domain: The Real Number System
Discipline: Math II
Conceptual Category: Number and Quantity

Cluster:
Use properties of rational and irrational numbers.

Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Standard Identifier: S-CP.1

Grade Range: 8–12
Domain: Conditional Probability and the Rules of Probability
Discipline: Math II
Conceptual Category: Statistics and Probability

Cluster:
Understand independence and conditional probability and use them to interpret data. [Link to data from simulations or experiments.]

Standard:
Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”). *

Showing 1 - 10 of 18 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881