Mathematics Standards
Results
Showing 1 - 10 of 109 Standards
Standard Identifier: G-C.1
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Prove that all circles are similar.
Understand and apply theorems about circles.
Standard:
Prove that all circles are similar.
Standard Identifier: G-C.2
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Understand and apply theorems about circles.
Standard:
Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Standard Identifier: G-C.3
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Understand and apply theorems about circles.
Standard:
Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Standard Identifier: G-C.4
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand and apply theorems about circles.
Standard:
(+) Construct a tangent line from a point outside a given circle to the circle.
Understand and apply theorems about circles.
Standard:
(+) Construct a tangent line from a point outside a given circle to the circle.
Standard Identifier: G-C.5
Grade Range:
8–12
Domain:
Circles
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Find arc lengths and areas of sectors of circles. [Radian introduced only as unit of measure]
Standard:
Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between degrees and radians. CA
Find arc lengths and areas of sectors of circles. [Radian introduced only as unit of measure]
Standard:
Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between degrees and radians. CA
Standard Identifier: G-CO.1
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.12
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Make geometric constructions. [Formalize and explain processes.]
Standard:
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Standard Identifier: G-CO.13
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Make geometric constructions. [Formalize and explain processes.]
Standard:
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Make geometric constructions. [Formalize and explain processes.]
Standard:
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Showing 1 - 10 of 109 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881