Mathematics Standards
Results
Showing 101 - 110 of 151 Standards
Standard Identifier: G-GPE.2
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: G-SRT.1.a
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
Standard Identifier: G-SRT.1.b
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Standard Identifier: G-SRT.2
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Understand similarity in terms of similarity transformations.
Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Standard Identifier: G-SRT.3
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.
Understand similarity in terms of similarity transformations.
Standard:
Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.
Standard Identifier: G-SRT.4
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally and conversely; the Pythagorean Theorem proved using triangle similarity.
Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally and conversely; the Pythagorean Theorem proved using triangle similarity.
Standard Identifier: G-SRT.5
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]
Standard:
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standard Identifier: G-SRT.6
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Showing 101 - 110 of 151 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881