Science (CA NGSS) Standards
Results
Showing 11 - 20 of 30 Standards
Standard Identifier: 3-PS2-4
Grade:
3
Disciplinary Core Idea:
PS2.B: Types of Interactions
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the Engineering, Technology, and Applications of Science process.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ETS1.A; 4.ETS1.A; MS.PS2.B
Performance Expectation: Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the Engineering, Technology, and Applications of Science process.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ETS1.A; 4.ETS1.A; MS.PS2.B
Standard Identifier: 3-5-ETS1-1
Grade:
4
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Standard Identifier: 4-LS1-2
Grade:
4
Disciplinary Core Idea:
LS1.D: Information Processing
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: 4-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. [Clarification Statement: Emphasis is on systems of information transfer.] [Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]
Disciplinary Core Idea(s):
LS1.D: Information Processing Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions.
Science & Engineering Practices: Developing and Using Models Use a model to test interactions concerning the functioning of a natural system.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.D; MS.LS1.A; MS.LS1.D
Performance Expectation: Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. [Clarification Statement: Emphasis is on systems of information transfer.] [Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]
Disciplinary Core Idea(s):
LS1.D: Information Processing Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions.
Science & Engineering Practices: Developing and Using Models Use a model to test interactions concerning the functioning of a natural system.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.D; MS.LS1.A; MS.LS1.D
Standard Identifier: 4-PS3-4
Grade:
4
Disciplinary Core Idea:
PS3.B: Conservation of Energy and Energy Transfer, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 3-5-ETS1-1
Grade:
5
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Standard Identifier: 5-PS2-1
Grade:
5
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Physical Science
Title: 5-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Support an argument that the gravitational force exerted by Earth on objects is directed down. [Clarification Statement: “Down” is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 3.PS2.A; 3.PS2.B; MS.PS2.B; MS.ESS1.B; MS.ESS2.C
Performance Expectation: Support an argument that the gravitational force exerted by Earth on objects is directed down. [Clarification Statement: “Down” is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 3.PS2.A; 3.PS2.B; MS.PS2.B; MS.ESS1.B; MS.ESS2.C
Standard Identifier: MS-ETS1-1
Grade Range:
6–8
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: MS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.
Science & Engineering Practices: Asking Questions and Defining Problems Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.
Crosscutting Concepts: Influence of Science, Engineering, and Technology on Society and the Natural World All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.7: Conduct short research projects to answer focused questions that allow for multiple avenues of exploration. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include: Physical Science: MS-PS3-3 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C; HS.ETS1.A; HS.ETS1.B
Performance Expectation: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.
Science & Engineering Practices: Asking Questions and Defining Problems Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.
Crosscutting Concepts: Influence of Science, Engineering, and Technology on Society and the Natural World All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.7: Conduct short research projects to answer focused questions that allow for multiple avenues of exploration. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include: Physical Science: MS-PS3-3 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C; HS.ETS1.A; HS.ETS1.B
Standard Identifier: MS-LS1-8
Grade Range:
6–8
Disciplinary Core Idea:
LS1.D: Information Processing
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. [Assessment Boundary: Assessment does not include mechanisms for the transmission of this information.]
Disciplinary Core Idea(s):
LS1.D: Information Processing Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.LS1.D; HS.LS1.A
Performance Expectation: Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. [Assessment Boundary: Assessment does not include mechanisms for the transmission of this information.]
Disciplinary Core Idea(s):
LS1.D: Information Processing Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.LS1.D; HS.LS1.A
Standard Identifier: MS-PS2-3
Grade Range:
6–8
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: MS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. [Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.] [Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.PS2.B; HS.PS2.B
Performance Expectation: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. [Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.] [Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.PS2.B; HS.PS2.B
Standard Identifier: MS-PS2-4
Grade Range:
6–8
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Physical Science
Title: MS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun.
Science & Engineering Practices: Engaging in Argument from Evidence Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.A ; MS.ESS1.B ; MS.ESS2.C Articulation across grade-bands: 5.PS2.B ; HS.PS2.B ; HS.ESS1.B
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun.
Science & Engineering Practices: Engaging in Argument from Evidence Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.A ; MS.ESS1.B ; MS.ESS2.C Articulation across grade-bands: 5.PS2.B ; HS.PS2.B ; HS.ESS1.B
Showing 11 - 20 of 30 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881