Science (CA NGSS) Standards
Results
Showing 1 - 10 of 12 Standards
Standard Identifier: K-2-ETS1-2
Grade:
K
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people.
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings.
DCI Connections:
Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: K-ESS3-3 First Grade: 1-PS4-4 Second Grade: 2-LS2-2 Articulation across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C
Performance Expectation: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people.
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings.
DCI Connections:
Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: K-ESS3-3 First Grade: 1-PS4-4 Second Grade: 2-LS2-2 Articulation across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C
Standard Identifier: K-ESS3-3
Grade:
K
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Earth and Space Science
Title: K-ESS3 Earth and Human Activity
Performance Expectation: Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to K-ESS3-3)
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas.
Crosscutting Concepts: Cause and Effect Events have causes that generate observable patterns.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.2: Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A Articulation across grade-levels: 2.ETS1.B; 4.ESS3.A; 5.ESS3.C
Performance Expectation: Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to K-ESS3-3)
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas.
Crosscutting Concepts: Cause and Effect Events have causes that generate observable patterns.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.2: Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A Articulation across grade-levels: 2.ETS1.B; 4.ESS3.A; 5.ESS3.C
Standard Identifier: K-2-ETS1-2
Grade:
1
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people.
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings.
DCI Connections:
Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: K-ESS3-3 First Grade: 1-PS4-4 Second Grade: 2-LS2-2 Articulation across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C
Performance Expectation: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people.
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings.
DCI Connections:
Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: K-ESS3-3 First Grade: 1-PS4-4 Second Grade: 2-LS2-2 Articulation across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C
Standard Identifier: 2-LS2-2
Grade:
2
Disciplinary Core Idea:
LS2.A: Interdependent Relationships in Ecosystems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: 2-LS2 Ecosystems: Interactions, Energy, and Dynamics
Performance Expectation: Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*
Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems Plants depend on animals for pollination or to move their seeds around. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to 2-LS2-2)
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: K.ETS1.A; 5.LS2.A
Performance Expectation: Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*
Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems Plants depend on animals for pollination or to move their seeds around. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to 2-LS2-2)
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: K.ETS1.A; 5.LS2.A
Standard Identifier: K-2-ETS1-2
Grade:
2
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people.
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings.
DCI Connections:
Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: K-ESS3-3 First Grade: 1-PS4-4 Second Grade: 2-LS2-2 Articulation across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C
Performance Expectation: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people.
Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings.
DCI Connections:
Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include: Kindergarten: K-ESS3-3 First Grade: 1-PS4-4 Second Grade: 2-LS2-2 Articulation across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C
Standard Identifier: 4-ESS3-2
Grade:
4
Disciplinary Core Idea:
ESS3.B: Natural Hazards, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 4-ESS3 Earth and Human Activity
Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B
Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B
Standard Identifier: MS-PS1-4
Grade Range:
6–8
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS3.A: Definitions of Energy
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: MS-PS1 Matter and Its Interactions
Performance Expectation: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. PS3.A: Definitions of Energy The term “heat” as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4) The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system’s material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4)
Science & Engineering Practices: Developing and Using Models Develop a model to predict and/or describe phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS2.C Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A
Performance Expectation: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. PS3.A: Definitions of Energy The term “heat” as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4) The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system’s material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4)
Science & Engineering Practices: Developing and Using Models Develop a model to predict and/or describe phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS2.C Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A
Standard Identifier: MS-PS3-2
Grade Range:
6–8
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: MS-PS3 Energy
Performance Expectation: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy A system of objects may also contain stored (potential) energy, depending on their relative positions. PS3.C: Relationship Between Energy and Forces When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.
Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.PS2.B; HS.PS3.B; HS.PS3.C
Performance Expectation: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy A system of objects may also contain stored (potential) energy, depending on their relative positions. PS3.C: Relationship Between Energy and Forces When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.
Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.PS2.B; HS.PS3.B; HS.PS3.C
Standard Identifier: HS-ETS1-4
Grade Range:
9–12
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Engineering, Technology, and Applications of Science
Title: HS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Both physical models and computers can be used in various ways to aid in the Engineering, Technology, and Applications of Science process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems.
Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include: Earth and Space Science: HS-ESS3-2; HS-ESS3-4 Life Science: HS-LS2-7; HS-LS4-6 Articulation across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C
Performance Expectation: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Both physical models and computers can be used in various ways to aid in the Engineering, Technology, and Applications of Science process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems.
Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include: Earth and Space Science: HS-ESS3-2; HS-ESS3-4 Life Science: HS-LS2-7; HS-LS4-6 Articulation across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C
Standard Identifier: HS-LS4-6
Grade Range:
9–12
Disciplinary Core Idea:
LS4.C: Adaptation, LS4.D: Biodiversity and Humans, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Life Science
Title: HS-LS4 HS-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]
Disciplinary Core Idea(s):
LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline–and sometimes the extinction–of some species. LS4.D: Biodiversity and Humans Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (Note: This Disciplinary Core Idea is also addressed by HS-LS2-7.) ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-LS4-6) Both physical models and computers can be used in various ways to aid in the Engineering, Technology, and Applications of Science process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (secondary to HS-LS4-6)
Science & Engineering Practices: Using Mathematics and Computational Thinking Create or revise a simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.D; HS.ESS2.E; HS.ESS3.A; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.LS2.C; MS.ESS3.C
Performance Expectation: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]
Disciplinary Core Idea(s):
LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline–and sometimes the extinction–of some species. LS4.D: Biodiversity and Humans Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (Note: This Disciplinary Core Idea is also addressed by HS-LS2-7.) ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-LS4-6) Both physical models and computers can be used in various ways to aid in the Engineering, Technology, and Applications of Science process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (secondary to HS-LS4-6)
Science & Engineering Practices: Using Mathematics and Computational Thinking Create or revise a simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.D; HS.ESS2.E; HS.ESS3.A; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.LS2.C; MS.ESS3.C
Showing 1 - 10 of 12 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881