Science (CA NGSS) Standards
Results
Showing 11 - 20 of 36 Standards
Standard Identifier: K-2-ETS1-3
Grade:
2
Disciplinary Core Idea:
ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Standard Identifier: 3-5-ETS1-1
Grade:
3
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Standard Identifier: 3-5-ETS1-3
Grade:
3
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 3-5-ETS1-1
Grade:
4
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Standard Identifier: 3-5-ETS1-3
Grade:
4
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 4-ESS2-1
Grade:
4
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Earth and Space Science
Title: 4-ESS2 Earth’s Systems
Performance Expectation: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 4.MD.A.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2, 24), (3,36),... 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 2.ESS2.A; 5.ESS2.A
Performance Expectation: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 4.MD.A.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2, 24), (3,36),... 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 2.ESS2.A; 5.ESS2.A
Standard Identifier: 4-PS3-4
Grade:
4
Disciplinary Core Idea:
PS3.B: Conservation of Energy and Energy Transfer, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 4-PS4-2
Grade:
4
Disciplinary Core Idea:
PS4.B: Electromagnetic Radiation
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]
Disciplinary Core Idea(s):
PS4.B: Electromagnetic Radiation An object can be seen when light reflected from its surface enters the eyes.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.PS4.B; MS.PS4.B; MS.LS1.D
Performance Expectation: Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]
Disciplinary Core Idea(s):
PS4.B: Electromagnetic Radiation An object can be seen when light reflected from its surface enters the eyes.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.PS4.B; MS.PS4.B; MS.LS1.D
Standard Identifier: 4-PS4-3
Grade:
4
Disciplinary Core Idea:
PS4.C: Information Technologies and Instrumentation, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
Standard Identifier: 3-5-ETS1-1
Grade:
5
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Showing 11 - 20 of 36 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881