Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 5 of 5 Standards

Standard Identifier: 5-PS1-2

Grade: 5
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Physical Science

Title: 5-PS1 Matter and Its Interactions

Performance Expectation: Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)

Science & Engineering Practices: Using Mathematics and Computational Thinking Measure and graph quantities such as weight to address scientific and engineering questions and problems.

Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A

Standard Identifier: MS-LS1-1

Grade Range: 6–8
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Life Science

Title: MS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. [Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells. Viruses, while not cells, have features that are both common with, and distinct from, cellular life.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).

Science & Engineering Practices: Planning and Carrying Out Investigations Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation.

Crosscutting Concepts: Scale, Proportion, and Quantity Phenomena that can be observed at one scale may not be observable at another scale. Connections to Engineering, Technology and Applications of Science: Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A

Standard Identifier: HS-LS1-3

Grade Range: 9–12
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Life Science

Title: HS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise, stomach response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Scientific inquiry is characterized by a common set of values that include: logical thinking, precision, open-mindedness, objectivity, skepticism, replicability of results, and honest and ethical reporting of findings.

Crosscutting Concepts: Stability and Change Feedback (negative or positive) can stabilize or destabilize a system.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.A

Standard Identifier: HS-PS1-6

Grade Range: 9–12
Disciplinary Core Idea: PS1.B: Chemical Reactions, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.* [Clarification Statement: Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.] [Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS1-6)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B Articulation across grade-bands: MS.PS1.B

Standard Identifier: HS-PS4-2

Grade Range: 9–12
Disciplinary Core Idea: PS4.A: Wave Properties
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: HS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Evaluate questions about the advantages of using digital transmission and storage of information. [Clarification Statement: Examples of advantages could include that digital information is stable because it can be stored reliably in computer memory, transferred easily, and copied and shared rapidly. Disadvantages could include issues of easy deletion, security, and theft.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses.

Science & Engineering Practices: Asking Questions and Defining Problems Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design.

Crosscutting Concepts: Stability and Change Systems can be designed for greater or lesser stability. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and Engineering, Technology, and Applications of Science practices to increase benefits while decreasing costs and risks.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.PS4.A; MS.PS4.B; MS.PS4.C

Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881