Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 11 - 17 of 17 Standards

Standard Identifier: MS-LS1-8

Grade Range: 6–8
Disciplinary Core Idea: LS1.D: Information Processing
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Life Science

Title: MS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. [Assessment Boundary: Assessment does not include mechanisms for the transmission of this information.]

Disciplinary Core Idea(s):
LS1.D: Information Processing Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.LS1.D; HS.LS1.A

Standard Identifier: MS-PS4-3

Grade Range: 6–8
Disciplinary Core Idea: PS4.C: Information Technologies and Instrumentation
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Physical Science

Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]

Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.

Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations. Connections to Nature of Science: Science is a Human Endeavor Advances in technology influence the progress of science and science has influenced advances in technology.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.2: Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS4.C; HS.PS4.A; HS.PS4.C

Standard Identifier: HS-ESS1-4

Grade Range: 9–12
Disciplinary Core Idea: ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. [Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]

Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system.

Science & Engineering Practices: Using Mathematical and Computational Thinking Use mathematical or computational representations of phenomena to describe explanations.

Crosscutting Concepts: Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.B Articulation across grade-bands: MS.PS2.A; MS.PS2.B; MS.ESS1.A; MS.ESS1.B

Standard Identifier: HS-ESS2-4

Grade Range: 9–12
Disciplinary Core Idea: ESS1.B: Earth and the Solar System, ESS2.A: Earth Materials and Systems, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4) ESS2.A: Earth Materials and Systems The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. ESS2.D: Weather and Climate The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate.

Science & Engineering Practices: Developing and Using Models Use a model to provide mechanistic accounts of phenomena. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science arguments are strengthened by multiple lines of evidence supporting a single explanation.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS3.B; HS.LS2.C; HS.ESS1.C; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B; MS.LS2.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.C; MS.ESS3.D

Standard Identifier: HS-ESS3-5

Grade Range: 9–12
Disciplinary Core Idea: ESS3.D: Global Climate Change
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Earth and Space Science

Title: HS-ESS3 Earth and Human Activity

Performance Expectation: Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems. [Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]

Disciplinary Core Idea(s):
ESS3.D: Global Climate Change Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts.

Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using computational models in order to make valid and reliable scientific claims. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Science investigations use diverse methods and do not always use the same set of procedures to obtain data. New technologies advance scientific knowledge. Scientific Knowledge is Based on Empirical Evidence Science knowledge is based on empirical evidence. Science arguments are strengthened by multiple lines of evidence supporting a single explanation.

Crosscutting Concepts: Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS3.D; HS.LS1.C; HS.ESS2.D Articulation across grade-bands: MS.PS3.B; MS.PS3.D; MS.ESS2.A; MS.ESS2.D; MS.ESS3.B; MS.ESS3.C; MS.ESS3.D

Standard Identifier: HS-ESS3-6

Grade Range: 9–12
Disciplinary Core Idea: ESS2.D: Weather and Climate, ESS3.D: Global Climate Change
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Earth and Space Science

Title: HS-ESS3 Earth and Human Activity

Performance Expectation: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]

Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6) ESS3.D: Global Climate Change Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.

Science & Engineering Practices: Using Mathematics and Computational Thinking Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.

Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS2.A Articulation across grade-bands: MS.LS2.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C; MS.ESS3.D

Standard Identifier: HS-PS4-5

Grade Range: 9–12
Disciplinary Core Idea: PS3.D: Energy in Chemical Processes, PS4.A: Wave Properties, PS4.B: Electromagnetic Radiation, PS4.C: Information Technologies and Instrumentation
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Physical Science

Title: HS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.* [Clarification Statement: Examples could include solar cells capturing light and converting it to electricity; medical imaging; and communications technology.] [Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.]

Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes Solar cells are human-made devices that likewise capture the sun’s energy and produce electrical energy. (secondary to HS-PS4-5) PS4.A: Wave Properties Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. PS4.B: Electromagnetic Radiation Photoelectric materials emit electrons when they absorb light of a high-enough frequency. PS4.C: Information Technologies and Instrumentation Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate technical information or ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).

Crosscutting Concepts: Cause and Effect Systems can be designed to cause a desired effect. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A Articulation across grade-bands: MS.PS4.A; MS.PS4.B; MS.PS4.C

Showing 11 - 17 of 17 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881