Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 10 of 16 Standards

Standard Identifier: 5-PS1-2

Grade: 5
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Physical Science

Title: 5-PS1 Matter and Its Interactions

Performance Expectation: Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)

Science & Engineering Practices: Using Mathematics and Computational Thinking Measure and graph quantities such as weight to address scientific and engineering questions and problems.

Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A

Standard Identifier: 5-PS3-1

Grade: 5
Disciplinary Core Idea: PS3.D: Energy in Chemical Processes, LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: 5-PS3 Energy

Performance Expectation: Use models to describe that energy in animals’ food (used for body repair, growth, and motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]

Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)

Science & Engineering Practices: Developing and Using Models Use models to describe phenomena.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: K.LS1.C; 2.LS2.A; 4.PS3.A; 4.PS3.B; 4.PS3.D; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B

Standard Identifier: MS-ESS1-1

Grade Range: 6–8
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS1 Earth’s Place in the Universe

Performance Expectation: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. ESS1.B: Earth and the Solar System This model of the solar system can explain eclipses of the sun and the moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Patterns Patterns can be used to identify cause-and-effect relationships. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B Articulation across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.B

Standard Identifier: MS-ESS1-2

Grade Range: 6–8
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS1 Earth’s Place in the Universe

Performance Expectation: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).] [Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-d: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B; Articulation across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.A; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.A; HS.ESS1.B

Standard Identifier: MS-LS1-7

Grade Range: 6–8
Disciplinary Core Idea: LS1.C: Organization for Matter and Energy Flow in Organisms, PS3.D: Energy in Chemical Processes
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. [Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.]

Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy. PS3.D: Energy in Chemical Processes Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. (secondary to MS-LS1-6)

Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.

Crosscutting Concepts: Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B Articulation across grade-bands: 5.PS3.D; 5.LS1.C; 5.LS2.B; HS.PS1.B; HS.LS1.C; HS.LS2.B

Standard Identifier: MS-PS1-3

Grade Range: 6–8
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Physical Science

Title: MS-PS1 Matter and Its Interactions

Performance Expectation: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. [Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative information.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or now supported by evidence.

Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. Influence of Science, Engineering and Technology on Society and the Natural World The uses of technologies and any limitation on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS4.D; MS.ESS3.A; MS.ESS3.C Articulation across grade-bands: HS.PS1.A; HS.LS2.A; HS.LS4.D; HS.ESS3.A

Standard Identifier: MS-PS1-5

Grade Range: 6–8
Disciplinary Core Idea: PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: MS-PS1 Matter and Its Interactions

Performance Expectation: Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. [Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms.] [Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. The total number of each type of atom is conserved, and thus the mass does not change.

Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena.

Crosscutting Concepts: Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 6.RP.3: Use ratio and rate reasoning to solve real-world and mathematical problems.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.C; MS.LS2.B; MS.ESS2.A Articulation across grade-bands: 5.PS1.B; HS.PS1.B

Standard Identifier: HS-ESS1-1

Grade Range: 9–12
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, PS3.D: Energy in Chemical Processes
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation. [Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun’s core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun’s radiation varies due to sudden solar flares (“space weather”), the 11-year sunspot cycle, and non-cyclic variations over centuries.] [Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the sun’s nuclear fusion.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. PS3.D: Energy in Chemical Processes Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary to HS-ESS1-1)

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Scale, Proportion, and Quantity The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. HSN-Q.A.2: Define appropriate quantities for the purpose of descriptive modeling. HSN-Q.A.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.C; HS.PS3.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A; MS.ESS2.A; MS.ESS2.D

Standard Identifier: HS-ESS1-3

Grade Range: 9–12
Disciplinary Core Idea: ESS1.A: The Universe and its Stars
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Communicate scientific ideas about the way stars, over their life cycle, produce elements. [Clarification Statement: Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime.] [Assessment Boundary: Details of the many different nucleosynthesis pathways for stars of differing masses are not assessed.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate scientific ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).

Crosscutting Concepts: Energy and Matter In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. SL.11-12.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. Mathematics MP.2: Reason abstractly and quantitatively.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C Articulation across grade-bands: MS.PS1.A; MS.ESS1.A

Standard Identifier: HS-ESS1-4

Grade Range: 9–12
Disciplinary Core Idea: ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. [Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]

Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system.

Science & Engineering Practices: Using Mathematical and Computational Thinking Use mathematical or computational representations of phenomena to describe explanations.

Crosscutting Concepts: Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.B Articulation across grade-bands: MS.PS2.A; MS.PS2.B; MS.ESS1.A; MS.ESS1.B

Showing 1 - 10 of 16 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881