Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 10 of 13 Standards

Standard Identifier: 1-LS1-1

Grade: 1
Disciplinary Core Idea: LS1.A: Structure and Function, LS1.D: Information Processing
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: 1-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.* [Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and, detecting intruders by mimicking eyes and ears.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. LS1.D: Information Processing Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use materials to design a device that solves a specific problem or a solution to a specific problem.

Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s). Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions).

DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: K.ETS1.A; 4.LS1.A; 4.LS1.D; 4.ETS1.A

Standard Identifier: 2-LS2-2

Grade: 2
Disciplinary Core Idea: LS2.A: Interdependent Relationships in Ecosystems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: 2-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*

Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems Plants depend on animals for pollination or to move their seeds around. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to 2-LS2-2)

Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.

Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.

DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: K.ETS1.A; 5.LS2.A

Standard Identifier: MS-ESS3-5

Grade Range: 6–8
Disciplinary Core Idea: ESS3.D: Global Climate Change
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Earth and Space Science

Title: MS-ESS3 Earth and Human Activity

Performance Expectation: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. [Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.]

Disciplinary Core Idea(s):
ESS3.D: Global Climate Change Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities.

Science & Engineering Practices: Asking Questions and Defining Problems Ask questions to identify and clarify evidence of an argument.

Crosscutting Concepts: Stability and Change Stability might be disturbed either by sudden events or gradual changes that accumulate over time.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.A Articulation across grade-bands: HS.PS3.B; HS.PS4.B; HS.ESS2.A; HS.ESS2.D; HS.ESS3.C; HS.ESS3.D

Standard Identifier: MS-LS1-2

Grade Range: 6–8
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Develop and use a model to describe the function of a cell as a whole and ways the parts of cells contribute to the function. [Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.] [Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS3.A Articulation across grade-bands: 4.LS1.A; HS.LS1.A

Standard Identifier: MS-LS2-4

Grade Range: 6–8
Disciplinary Core Idea: LS2.C: Ecosystem Dynamics, Functioning, and Resilience
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Life Science

Title: MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]

Disciplinary Core Idea(s):
LS2.C: Ecosystem Dynamics, Functioning, and Resilience Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations.

Science & Engineering Practices: Engaging in Argument from Evidence Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science disciplines share common rules of obtaining and evaluating empirical evidence.

Crosscutting Concepts: Stability and Change Small changes in one part of a system might cause large changes in another part.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.8.8: Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. WHST.6-8.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.C; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C Articulation across grade-bands: 3.LS2.C; 3.LS4.D; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.E; HS.ESS3.B; HS.ESS3.C

Standard Identifier: MS-LS2-5

Grade Range: 6–8
Disciplinary Core Idea: LS2.C: Ecosystem Dynamics, Functioning, and Resilience, LS4.D: Biodiversity and Humans, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Life Science

Title: MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.* [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]

Disciplinary Core Idea(s):
LS2.C: Ecosystem Dynamics, Functioning, and Resilience Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. LS4.D: Biodiversity and Humans Changes in biodiversity can influence humans’ resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary to MS-LS2-5) ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary to MS-LS2-5)

Science & Engineering Practices: Engaging in Argument from Evidence Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.

Crosscutting Concepts: Stability and Change Small changes in one part of a system might cause large changes in another part. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The use of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.8: Distinguish among facts, reasoned judgment based on research findings, and speculation in a text. RI.8.8: Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. Mathematics MP.4: Model with mathematics. 6.RP.3.a-d: Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS3.C Articulation across grade-bands: HS.LS2.A; HS.LS2.C; HS.LS4.D; HS.ESS3.A; HS.ESS3.C; HS.ESS3.D

Standard Identifier: MS-PS4-3

Grade Range: 6–8
Disciplinary Core Idea: PS4.C: Information Technologies and Instrumentation
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Physical Science

Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]

Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.

Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations. Connections to Nature of Science: Science is a Human Endeavor Advances in technology influence the progress of science and science has influenced advances in technology.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.2: Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS4.C; HS.PS4.A; HS.PS4.C

Standard Identifier: HS-ESS1-6

Grade Range: 9–12
Disciplinary Core Idea: ESS1.C: The History of Planet Earth, PS1.C: Nuclear Processes
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]

Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-6)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory.

Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-12.1: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. F-IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. S-ID.6.a-c: Represent data on two quantitative variables on a scatter plot, and describe how those variables are related.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.A; HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.ESS1.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B

Standard Identifier: HS-ESS3-5

Grade Range: 9–12
Disciplinary Core Idea: ESS3.D: Global Climate Change
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Earth and Space Science

Title: HS-ESS3 Earth and Human Activity

Performance Expectation: Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems. [Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]

Disciplinary Core Idea(s):
ESS3.D: Global Climate Change Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts.

Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using computational models in order to make valid and reliable scientific claims. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Science investigations use diverse methods and do not always use the same set of procedures to obtain data. New technologies advance scientific knowledge. Scientific Knowledge is Based on Empirical Evidence Science knowledge is based on empirical evidence. Science arguments are strengthened by multiple lines of evidence supporting a single explanation.

Crosscutting Concepts: Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS3.D; HS.LS1.C; HS.ESS2.D Articulation across grade-bands: MS.PS3.B; MS.PS3.D; MS.ESS2.A; MS.ESS2.D; MS.ESS3.B; MS.ESS3.C; MS.ESS3.D

Standard Identifier: HS-LS1-1

Grade Range: 9–12
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: HS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells. [Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the biochemistry of protein synthesis.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function Systems of specialized cells within organisms help them perform the essential functions of life. All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Crosscutting Concepts: Structure and Function Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.2.a–e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific/procedures, or technical processes. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS3.A Articulation across grade-bands: MS.LS1.A; MS.LS3.A; MS.LS3.B

Showing 1 - 10 of 13 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881