Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 11 - 20 of 26 Standards

Standard Identifier: MS-LS2-3

Grade Range: 6–8
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.

Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a natural system. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B Articulation across grade-bands: 5.LS2.A; 5.LS2.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A

Standard Identifier: MS-PS1-4

Grade Range: 6–8
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS3.A: Definitions of Energy
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: MS-PS1 Matter and Its Interactions

Performance Expectation: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. PS3.A: Definitions of Energy The term “heat” as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4) The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system’s material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4)

Science & Engineering Practices: Developing and Using Models Develop a model to predict and/or describe phenomena.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS2.C Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A

Standard Identifier: MS-PS3-1

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a whiffle ball versus a tennis ball.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed.

Science & Engineering Practices: Analyzing and Interpreting Data Construct and interpret graphical displays of data to identify linear and nonlinear relationships.

Crosscutting Concepts: Scale, Proportion, and Quantity Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.RP.2: Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions. 8.EE.2: Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. 8.F.3: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A Articulation across grade-bands: 4.PS3.B; HS.PS3.A; HS.PS3.B

Standard Identifier: MS-PS3-2

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy A system of objects may also contain stored (potential) energy, depending on their relative positions. PS3.C: Relationship Between Energy and Forces When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.

Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy and matter flows within systems.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.PS2.B; HS.PS3.B; HS.PS3.C

Standard Identifier: MS-PS3-3

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, ETS1.A: Defining and Delimiting Engineering Problems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. PS3.B: Conservation of Energy and Energy Transfer Energy is spontaneously transferred out of hotter regions or objects and into colder ones. ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary to MS-PS3-3) ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary to MS-PS3-3)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D Articulation across grade-bands: 4.PS3.B; HS.PS3.B

Standard Identifier: MS-PS3-4.

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. PS3.B: Conservation of Energy and Energy Transfer The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Crosscutting Concepts: Scale, Proportion, and Quantity Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. Mathematics MP.2: Reason abstractly and quantitatively. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.ESS2.C; MS.ESS2.D; MS.ESS3.D Articulation across grade-bands: 4.PS3.C; HS.PS1.B; HS.PS3.A; HS.PS3.B

Standard Identifier: HS-ESS1-4

Grade Range: 9–12
Disciplinary Core Idea: ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. [Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]

Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system.

Science & Engineering Practices: Using Mathematical and Computational Thinking Use mathematical or computational representations of phenomena to describe explanations.

Crosscutting Concepts: Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.B Articulation across grade-bands: MS.PS2.A; MS.PS2.B; MS.ESS1.A; MS.ESS1.B

Standard Identifier: HS-ESS2-4

Grade Range: 9–12
Disciplinary Core Idea: ESS1.B: Earth and the Solar System, ESS2.A: Earth Materials and Systems, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4) ESS2.A: Earth Materials and Systems The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. ESS2.D: Weather and Climate The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate.

Science & Engineering Practices: Developing and Using Models Use a model to provide mechanistic accounts of phenomena. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science arguments are strengthened by multiple lines of evidence supporting a single explanation.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS3.B; HS.LS2.C; HS.ESS1.C; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B; MS.LS2.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.C; MS.ESS3.D

Standard Identifier: HS-LS2-3

Grade Range: 9–12
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence.

Crosscutting Concepts: Energy and Matter Energy drives the cycling of matter within and between systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.2.a–e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.9-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.PS3.B; HS.PS3.D; HS.ESS2.A Articulation across grade-bands: MS.PS1.B; MS.PS3.D; MS.LS1.C; MS.LS2.B

Standard Identifier: HS-LS2-4

Grade Range: 9–12
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Life Science

Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved.

Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations of phenomena or design solutions to support claims.

Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS3.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B

Showing 11 - 20 of 26 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881