Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 11 - 20 of 24 Standards

Standard Identifier: MS-LS3-1

Grade Range: 6–8
Disciplinary Core Idea: LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]

Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. LS3.B: Variation of Traits In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6–8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6–8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. RST.6–8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.A; MS.LS4.A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.A; HS.LS1.B; HS.LS3.A; HS.LS3.B

Standard Identifier: MS-LS3-2

Grade Range: 6–8
Disciplinary Core Idea: LS1.B: Growth and Development of Organisms, LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]

Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (secondary to MS-LS3-2) LS3.A: Inheritance of Traits Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.B; HS.LS3.A; HS.LS3.B

Standard Identifier: MS-PS1-4

Grade Range: 6–8
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS3.A: Definitions of Energy
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: MS-PS1 Matter and Its Interactions

Performance Expectation: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. PS3.A: Definitions of Energy The term “heat” as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4) The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system’s material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4)

Science & Engineering Practices: Developing and Using Models Develop a model to predict and/or describe phenomena.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS2.C Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A

Standard Identifier: MS-PS3-1

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a whiffle ball versus a tennis ball.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed.

Science & Engineering Practices: Analyzing and Interpreting Data Construct and interpret graphical displays of data to identify linear and nonlinear relationships.

Crosscutting Concepts: Scale, Proportion, and Quantity Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.RP.2: Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions. 8.EE.2: Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. 8.F.3: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A Articulation across grade-bands: 4.PS3.B; HS.PS3.A; HS.PS3.B

Standard Identifier: MS-PS3-2

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy A system of objects may also contain stored (potential) energy, depending on their relative positions. PS3.C: Relationship Between Energy and Forces When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.

Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy and matter flows within systems.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.PS2.B; HS.PS3.B; HS.PS3.C

Standard Identifier: MS-PS3-3

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, ETS1.A: Defining and Delimiting Engineering Problems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. PS3.B: Conservation of Energy and Energy Transfer Energy is spontaneously transferred out of hotter regions or objects and into colder ones. ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary to MS-PS3-3) ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary to MS-PS3-3)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D Articulation across grade-bands: 4.PS3.B; HS.PS3.B

Standard Identifier: MS-PS3-4.

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. PS3.B: Conservation of Energy and Energy Transfer The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Crosscutting Concepts: Scale, Proportion, and Quantity Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. Mathematics MP.2: Reason abstractly and quantitatively. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.ESS2.C; MS.ESS2.D; MS.ESS3.D Articulation across grade-bands: 4.PS3.C; HS.PS1.B; HS.PS3.A; HS.PS3.B

Standard Identifier: HS-LS1-4

Grade Range: 9–12
Disciplinary Core Idea: LS1.B: Growth and Development of Organisms
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: HS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. [Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.]

Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism.

Science & Engineering Practices: Developing and Using Models Use a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.4: Model with mathematics. F-IF.7.a-e: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F-BF.1.a-c: Write a function that describes a relationship between two quantities.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.A; MS.LS1.B; MS.LS3.A

Standard Identifier: HS-LS3-2

Grade Range: 9–12
Disciplinary Core Idea: LS3.B: Variation of Traits
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Life Science

Title: HS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]

Disciplinary Core Idea(s):
LS3.B: Variation of Traits In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.

Science & Engineering Practices: Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B

Standard Identifier: HS-LS3-3

Grade Range: 9–12
Disciplinary Core Idea: LS3.B: Variation of Traits
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Life Science

Title: HS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.]

Disciplinary Core Idea(s):
LS3.B: Variation of Traits Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.

Science & Engineering Practices: Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible.

Crosscutting Concepts: Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Connections to Nature of Science: Science is a Human Endeavor Technological advances have influenced the progress of science and science has influenced advances in technology. Science and engineering are influenced by society and society is influenced by science and engineering.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.A; HS.LS2.C; HS.LS4.B; HS.LS4.C Articulation across grade-bands: MS.LS2.A; MS.LS3.B; MS.LS4.C

Showing 11 - 20 of 24 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881