Science (CA NGSS) Standards
Remove this criterion from the search
Add a Disciplinary Core Idea
Remove this criterion from the search
ESS1.A: The Universe and its Stars
Remove this criterion from the search
ESS1.C: The History of Planet Earth
Remove this criterion from the search
ESS2.A: Earth Materials and Systems
Remove this criterion from the search
ESS2.D: Weather and Climate
Remove this criterion from the search
ESS3.B: Natural Hazards
Remove this criterion from the search
LS1.B: Growth and Development of Organisms
Remove this criterion from the search
LS1.C: Organization for Matter and Energy Flow in Organisms
Remove this criterion from the search
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Remove this criterion from the search
LS2.C: Ecosystem Dynamics, Functioning, and Resilience
Remove this criterion from the search
LS2.D: Social Interactions and Group Behavior
Remove this criterion from the search
LS3.A: Inheritance of Traits
Remove this criterion from the search
LS3.B: Variation of Traits
Remove this criterion from the search
LS4.A: Evidence of Common Ancestry and Diversity
Remove this criterion from the search
LS4.B: Natural Selection
Remove this criterion from the search
LS4.C: Adaptation
Remove this criterion from the search
LS4.D: Biodiversity and Humans
Remove this criterion from the search
PS1.B: Chemical Reactions
Remove this criterion from the search
PS1.C: Nuclear Processes
Remove this criterion from the search
PS2.B: Types of Interactions
Remove this criterion from the search
PS4.B: Electromagnetic Radiation
Remove this criterion from the search
Add a Science & Engineering Practice
Remove this criterion from the search
SEP-2: Developing and Using Models
Remove this criterion from the search
SEP-3: Planning and Carrying Out Investigations
Remove this criterion from the search
SEP-4: Analyzing and Interpreting Data
Remove this criterion from the search
SEP-5: Using Mathematics and Computational Thinking
Results
Showing 1 - 10 of 12 Standards
Standard Identifier: 5-ESS2-1
Grade:
5
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: 5-ESS2 Earth’s Systems
Performance Expectation: Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: The geosphere, hydrosphere (including ice), atmosphere, and biosphere are each system is a part of the whole Earth System. Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.
Science & Engineering Practices: Developing and Using Models Develop a model using an example to describe a scientific principle.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: The geosphere, hydrosphere (including ice), atmosphere, and biosphere are each system is a part of the whole Earth System. Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.
Science & Engineering Practices: Developing and Using Models Develop a model using an example to describe a scientific principle.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D
Standard Identifier: 5-LS2-1
Grade:
5
Disciplinary Core Idea:
LS2.A: Interdependent Relationships in Ecosystems, LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: 5-LS2 Ecosystems: Interactions, Energy, and Dynamics
Performance Expectation: Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]
Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Science explanations describe the mechanisms for natural events.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A; 5.ESS2.A Articulation across grade-levels: 2.PS1.A; 2.LS4.D; 4.ESS2.E; MS.LS1.C; MS.LS2.A; MS.LS2.B; MS.PS3.D
Performance Expectation: Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]
Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Science explanations describe the mechanisms for natural events.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A; 5.ESS2.A Articulation across grade-levels: 2.PS1.A; 2.LS4.D; 4.ESS2.E; MS.LS1.C; MS.LS2.A; MS.LS2.B; MS.PS3.D
Standard Identifier: MS-ESS1-2
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.A: The Universe and its Stars, ESS1.B: Earth and the Solar System
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: MS-ESS1 Earth’s Place in the Universe
Performance Expectation: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).] [Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-d: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B; Articulation across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.A; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.A; HS.ESS1.B
Performance Expectation: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).] [Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-d: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B; Articulation across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.A; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.A; HS.ESS1.B
Standard Identifier: MS-ESS2-1
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Stability and Change Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS1.B; MS.PS3.B; MS.LS2.B; MS.LS2.C; MS.ESS1.B; MS.ESS3.C Articulation across grade-bands: 4.PS3.B; 4.ESS2.A; 5.ESS2.A; HS.PS1.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.E
Performance Expectation: Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Stability and Change Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS1.B; MS.PS3.B; MS.LS2.B; MS.LS2.C; MS.ESS1.B; MS.ESS3.C Articulation across grade-bands: 4.PS3.B; 4.ESS2.A; 5.ESS2.A; HS.PS1.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.E
Standard Identifier: MS-ESS2-6
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B Articulation across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS2.B; HS.PS3.B; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D
Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B Articulation across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS2.B; HS.PS3.B; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D
Standard Identifier: MS-LS3-1
Grade Range:
6–8
Disciplinary Core Idea:
LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: MS-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]
Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. LS3.B: Variation of Traits In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6–8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6–8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. RST.6–8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.A; MS.LS4.A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.A; HS.LS1.B; HS.LS3.A; HS.LS3.B
Performance Expectation: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]
Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. LS3.B: Variation of Traits In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6–8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6–8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. RST.6–8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.A; MS.LS4.A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.A; HS.LS1.B; HS.LS3.A; HS.LS3.B
Standard Identifier: MS-PS4-2
Grade Range:
6–8
Disciplinary Core Idea:
PS4.A: Wave Properties, PS4.B: Electromagnetic Radiation
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. [Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions.] [Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties A sound wave needs a medium through which it is transmitted. PS4.B: Electromagnetic Radiation When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light. The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. However, because light can travel through space, it cannot be a matter wave, like sound or water waves.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.D Articulation across grade-bands: 4.PS4.B; HS.PS4.A; HS.PS4.B; HS.ESS1.A; HS.ESS2.A; HS.ESS2.C; HS.ESS2.D
Performance Expectation: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. [Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions.] [Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties A sound wave needs a medium through which it is transmitted. PS4.B: Electromagnetic Radiation When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light. The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. However, because light can travel through space, it cannot be a matter wave, like sound or water waves.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.D Articulation across grade-bands: 4.PS4.B; HS.PS4.A; HS.PS4.B; HS.ESS1.A; HS.ESS2.A; HS.ESS2.C; HS.ESS2.D
Standard Identifier: HS-ESS2-1
Grade Range:
9–12
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: HS-ESS2 Earth’s Systems
Performance Expectation: Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth’s crust. (ESS2.B Grade 8 GBE)
Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.
Crosscutting Concepts: Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.LS2.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth’s crust. (ESS2.B Grade 8 GBE)
Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.
Crosscutting Concepts: Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.LS2.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D
Standard Identifier: HS-ESS2-2
Grade Range:
9–12
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: HS-ESS2 Earth’s Systems
Performance Expectation: Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.D: Weather and Climate The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.
Crosscutting Concepts: Stability and Change Feedback (negative or positive) can stabilize or destabilize a system. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS4.B; HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.PS3.D; MS.PS4.B; MS.LS2.B; MS.LS2.C; MS.LS4.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.D
Performance Expectation: Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.D: Weather and Climate The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.
Crosscutting Concepts: Stability and Change Feedback (negative or positive) can stabilize or destabilize a system. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS4.B; HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.PS3.D; MS.PS4.B; MS.LS2.B; MS.LS2.C; MS.LS4.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.D
Standard Identifier: HS-ESS3-6
Grade Range:
9–12
Disciplinary Core Idea:
ESS2.D: Weather and Climate, ESS3.D: Global Climate Change
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Earth and Space Science
Title: HS-ESS3 Earth and Human Activity
Performance Expectation: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6) ESS3.D: Global Climate Change Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS2.A Articulation across grade-bands: MS.LS2.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C; MS.ESS3.D
Performance Expectation: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6) ESS3.D: Global Climate Change Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS2.A Articulation across grade-bands: MS.LS2.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C; MS.ESS3.D
Showing 1 - 10 of 12 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881