Science (CA NGSS) Standards
Results
Showing 1 - 10 of 11 Standards
Standard Identifier: 2-ESS1-1
Grade:
2
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 2-ESS1 Earth’s Place in the Universe
Performance Expectation: Use information from several sources to provide evidence that Earth events can occur quickly or slowly. [Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary: Assessment does not include quantitative measurements of timescales.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations from several sources to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. SL.2.2: Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. a. Give and follow three- and four-step oral directions. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.1-4: Understand place value.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 3.LS2.C; 4.ESS1.C; 4.ESS2.A
Performance Expectation: Use information from several sources to provide evidence that Earth events can occur quickly or slowly. [Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary: Assessment does not include quantitative measurements of timescales.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations from several sources to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. SL.2.2: Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. a. Give and follow three- and four-step oral directions. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.1-4: Understand place value.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 3.LS2.C; 4.ESS1.C; 4.ESS2.A
Standard Identifier: 3-LS4-1
Grade:
3
Disciplinary Core Idea:
LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Life Science
Title: 3-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. [Clarification Statement: Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: moved from K-2) Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Scale, Proportion, and Quantity Observable phenomena exist from very short to very long time periods. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.1: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 4.ESS1.C; MS.LS2.A; MS.LS4.A; MS.ESS1.C; MS.ESS2.B
Performance Expectation: Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. [Clarification Statement: Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: moved from K-2) Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Scale, Proportion, and Quantity Observable phenomena exist from very short to very long time periods. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.1: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 4.ESS1.C; MS.LS2.A; MS.LS4.A; MS.ESS1.C; MS.ESS2.B
Standard Identifier: 4-ESS1-1
Grade:
4
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 4-ESS1 Earth’s Place in the Universe
Performance Expectation: Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Identify the evidence that supports particular points in an explanation.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.MD.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2,24), (3,36),...
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 3.LS4.A; MS.LS4.A; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Identify the evidence that supports particular points in an explanation.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.MD.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2,24), (3,36),...
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 3.LS4.A; MS.LS4.A; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: MS-ESS1-4
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: MS-ESS1 Earth’s Place in the Universe
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. Mathematics 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A; MS.LS4.C Articulation across grade-bands: 3.LS4.A; 3.LS4.C; 4.ESS1.C; HS.PS1.C; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. Mathematics 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A; MS.LS4.C Articulation across grade-bands: 3.LS4.A; 3.LS4.C; 4.ESS1.C; HS.PS1.C; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A
Standard Identifier: MS-ESS2-3
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth, ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3) ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to provide evidence for phenomena. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Science findings are frequently revised and/or reinterpreted based on new evidence.
Crosscutting Concepts: Patterns Patterns in rates of change and other numerical relationships can provide information about natural systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A Articulation across grade-bands: 3.LS4.A; 3.ESS3.B; 4.ESS1.C; 4.ESS2.B; 4.ESS3.B; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3) ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to provide evidence for phenomena. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Science findings are frequently revised and/or reinterpreted based on new evidence.
Crosscutting Concepts: Patterns Patterns in rates of change and other numerical relationships can provide information about natural systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A Articulation across grade-bands: 3.LS4.A; 3.ESS3.B; 4.ESS1.C; 4.ESS2.B; 4.ESS3.B; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B
Standard Identifier: MS-LS4-1
Grade Range:
6–8
Disciplinary Core Idea:
LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Life Science
Title: MS-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.C; MS.ESS2.B Articulation across grade-bands: 3.LS4.A; HS.LS4.A; HS.ESS1.C
Performance Expectation: Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.C; MS.ESS2.B Articulation across grade-bands: 3.LS4.A; HS.LS4.A; HS.ESS1.C
Standard Identifier: MS-LS4-2
Grade Range:
6–8
Disciplinary Core Idea:
LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Life Science
Title: MS-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events.
Crosscutting Concepts: Patterns Patterns can be used to identify cause and effect relationships. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.2.a–f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. SL.8.1.a–d: Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others’ ideas and expressing their own clearly. SL.8.4: Present claims and findings (e.g., argument, narrative, response to literature presentations), emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. a. Plan and present a narrative that: establishes a context and point of view, presents a logical sequence, uses narrative techniques (e.g., dialogue, pacing, description, sensory language), uses a variety of transitions, and provides a conclusion that reflects the experience.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS3.A; MS.LS3.B; MS.ESS1.C Articulation across grade-bands: 3.LS4.A; HS.LS4.A; HS.ESS1.C
Performance Expectation: Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events.
Crosscutting Concepts: Patterns Patterns can be used to identify cause and effect relationships. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.2.a–f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. SL.8.1.a–d: Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others’ ideas and expressing their own clearly. SL.8.4: Present claims and findings (e.g., argument, narrative, response to literature presentations), emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. a. Plan and present a narrative that: establishes a context and point of view, presents a logical sequence, uses narrative techniques (e.g., dialogue, pacing, description, sensory language), uses a variety of transitions, and provides a conclusion that reflects the experience.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS3.A; MS.LS3.B; MS.ESS1.C Articulation across grade-bands: 3.LS4.A; HS.LS4.A; HS.ESS1.C
Standard Identifier: MS-LS4-3
Grade Range:
6–8
Disciplinary Core Idea:
LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Life Science
Title: MS-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze displays of data to identify linear and nonlinear relationships.
Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS4.A
Performance Expectation: Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze displays of data to identify linear and nonlinear relationships.
Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS4.A
Standard Identifier: HS-ESS1-5
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth, ESS2.B: Plate Tectonics and Large-Scale System Interactions, PS1.C: Nuclear Processes
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core of the continental plate (a result of past plate interactions).]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5) PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5)
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate evidence behind currently accepted explanations or solutions to determine the merits of arguments.
Crosscutting Concepts: Patterns Empirical evidence is needed to identify patterns.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.ESS2.A Articulation across grade-bands: MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core of the continental plate (a result of past plate interactions).]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5) PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5)
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate evidence behind currently accepted explanations or solutions to determine the merits of arguments.
Crosscutting Concepts: Patterns Empirical evidence is needed to identify patterns.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.ESS2.A Articulation across grade-bands: MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: HS-ESS1-6
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth, PS1.C: Nuclear Processes
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-12.1: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. F-IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. S-ID.6.a-c: Represent data on two quantitative variables on a scatter plot, and describe how those variables are related.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.A; HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.ESS1.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-12.1: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. F-IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. S-ID.6.a-c: Represent data on two quantitative variables on a scatter plot, and describe how those variables are related.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.A; HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.ESS1.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Showing 1 - 10 of 11 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881