Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 21 - 30 of 38 Standards

Standard Identifier: MS-PS3-3

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, ETS1.A: Defining and Delimiting Engineering Problems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. PS3.B: Conservation of Energy and Energy Transfer Energy is spontaneously transferred out of hotter regions or objects and into colder ones. ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary to MS-PS3-3) ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary to MS-PS3-3)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D Articulation across grade-bands: 4.PS3.B; HS.PS3.B

Standard Identifier: MS-PS4-1

Grade Range: 6–8
Disciplinary Core Idea: PS4.A: Wave Properties
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Physical Science

Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. [Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.

Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations to describe and/or support scientific conclusions and design solutions. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Crosscutting Concepts: Patterns Graphs and charts can be used to identify patterns in data.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.RP.3.a-d: Use ratio and rate reasoning to solve real-world and mathematical problems. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 8.F.3: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS3.A; 4.PS3.B; 4.PS4.A; HS.PS4.A; HS.PS4.B

Standard Identifier: MS-PS4-2

Grade Range: 6–8
Disciplinary Core Idea: PS4.A: Wave Properties, PS4.B: Electromagnetic Radiation
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. [Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions.] [Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties A sound wave needs a medium through which it is transmitted. PS4.B: Electromagnetic Radiation When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light. The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. However, because light can travel through space, it cannot be a matter wave, like sound or water waves.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.D Articulation across grade-bands: 4.PS4.B; HS.PS4.A; HS.PS4.B; HS.ESS1.A; HS.ESS2.A; HS.ESS2.C; HS.ESS2.D

Standard Identifier: HS-LS4-6

Grade Range: 9–12
Disciplinary Core Idea: LS4.C: Adaptation, LS4.D: Biodiversity and Humans, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Life Science

Title: HS-LS4 HS-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]

Disciplinary Core Idea(s):
LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline–and sometimes the extinction–of some species. LS4.D: Biodiversity and Humans Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (Note: This Disciplinary Core Idea is also addressed by HS-LS2-7.) ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-LS4-6) Both physical models and computers can be used in various ways to aid in the Engineering, Technology, and Applications of Science process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (secondary to HS-LS4-6)

Science & Engineering Practices: Using Mathematics and Computational Thinking Create or revise a simulation of a phenomenon, designed device, process, or system.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.D; HS.ESS2.E; HS.ESS3.A; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.LS2.C; MS.ESS3.C

Standard Identifier: HS-PS1-1

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS2.B: Types of Interactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-1)

Science & Engineering Practices: Developing and Using Models Use a model to predict the relationships between systems or between components of a system.

Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.9-10.7: Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS1.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B

Standard Identifier: HS-PS1-2

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. [Clarification Statement: Examples of chemical reactions could include the reaction of sodium and chlorine, of carbon and oxygen, or of carbon and hydrogen.] [Assessment Boundary: Assessment is limited to chemical reactions involving main group elements and combustion reactions.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS1.B: Chemical Reactions The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS1.C; HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B

Standard Identifier: HS-PS1-3

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS2.B: Types of Interactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult’s law calculations of vapor pressure.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-3)

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.

Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS2.B

Standard Identifier: HS-PS1-4

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. [Clarification Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.] [Assessment Boundary: Assessment does not include calculating the total bond energy changes during a chemical reaction from the bond energies of reactants and products.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. PS1.B: Chemical Reactions Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy.

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS3.B; HS.PS3.D; HS.LS1.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B; MS.PS2.B; MS.PS3.D; MS.LS1.C

Standard Identifier: HS-PS1-5

Grade Range: 9–12
Disciplinary Core Idea: PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. [Clarification Statement: Emphasis is on student reasoning that focuses on the number and energy of collisions between molecules.] [Assessment Boundary: Assessment is limited to simple reactions in which there are only two reactants; evidence from temperature, concentration, and rate data; and qualitative relationships between rate and temperature.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific principles and evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects.

Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A Articulation across grade-bands: MS.PS1.A; MS.PS1.B; MS.PS2.B; MS.PS3.A; MS.PS3.B

Standard Identifier: HS-PS1-6

Grade Range: 9–12
Disciplinary Core Idea: PS1.B: Chemical Reactions, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.* [Clarification Statement: Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.] [Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS1-6)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B Articulation across grade-bands: MS.PS1.B

Showing 21 - 30 of 38 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881