Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 10 of 34 Standards

Standard Identifier: K-PS2-2

Grade: K
Disciplinary Core Idea: PS2.A: Forces and Motion, PS2.B: Types of Interactions, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Physical Science

Title: K-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]

Disciplinary Core Idea(s):
PS2.A: Forces and Motion Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. PS2.B: Types of Interactions When objects touch or collide, they push on one another and can change motion. ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)

Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.

Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.K.1: With prompting and support, ask and answer questions about key details in a text. SL.K.3: Ask and answer questions in order to seek help, get information, or clarify something that is not understood.

DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A; K.ETS1.B Articulation across grade-levels: 2.ETS1.B; 3.PS2.A; 4.ETS1.A

Standard Identifier: 1-PS4-4

Grade: 1
Disciplinary Core Idea: PS4.C: Information Technologies and Instrumentation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: 1-PS4 Waves and their Applications in Technologies for Information Transfer

Performance Expectation: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.* [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string “telephones,” and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]

Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation People also use a variety of devices to communicate (send and receive information) over long distances.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use tools and materials provided to design a device that solves a specific problem.

Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science, on Society and the Natural World People depend on various technologies in their lives; human life would be very different without technology.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). Mathematics MP.5: Use appropriate tools strategically. 1.MD.1-2: Measure lengths indirectly and by iterating length units.

DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B ; 4.PS4.C; 4.ETS1.A

Standard Identifier: 2-LS2-2

Grade: 2
Disciplinary Core Idea: LS2.A: Interdependent Relationships in Ecosystems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: 2-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*

Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems Plants depend on animals for pollination or to move their seeds around. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to 2-LS2-2)

Science & Engineering Practices: Developing and Using Models Develop a simple model based on evidence to represent a proposed object or tool.

Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.

DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: K.ETS1.A; 5.LS2.A

Standard Identifier: 3-LS4-2

Grade: 3
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: 3-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.

DCI Connections:
Connections to other DCIs in third grade: 3.LS4.C Articulation across grade-levels: MS.LS2.A; MS.LS3.B; MS.LS4.B

Standard Identifier: 4-PS3-3

Grade: 4
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: 4-PS3 Energy

Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.

Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C

Standard Identifier: 4-PS3-4

Grade: 4
Disciplinary Core Idea: PS3.B: Conservation of Energy and Energy Transfer, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: 4-PS3 Energy

Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]

Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C

Standard Identifier: 4-PS4-1

Grade: 4
Disciplinary Core Idea: PS4.A: Wave Properties
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2.) Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).

Science & Engineering Practices: Developing and Using Models Develop a model using an analogy, example, or abstract representation to describe a scientific principle. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.

Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

DCI Connections:
Connections to other DCIs in fourth grade: 4.PS3.A ; 4.PS3.B Articulation across grade-levels: MS.PS4.A

Standard Identifier: 4-PS4-3

Grade: 4
Disciplinary Core Idea: PS4.C: Information Technologies and Instrumentation, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]

Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.

Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.

DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B

Standard Identifier: 5-LS2-1

Grade: 5
Disciplinary Core Idea: LS2.A: Interdependent Relationships in Ecosystems, LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: 5-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]

Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.

Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Science explanations describe the mechanisms for natural events.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.

DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A; 5.ESS2.A Articulation across grade-levels: 2.PS1.A; 2.LS4.D; 4.ESS2.E; MS.LS1.C; MS.LS2.A; MS.LS2.B; MS.PS3.D

Standard Identifier: 5-PS3-1

Grade: 5
Disciplinary Core Idea: PS3.D: Energy in Chemical Processes, LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: 5-PS3 Energy

Performance Expectation: Use models to describe that energy in animals’ food (used for body repair, growth, and motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]

Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)

Science & Engineering Practices: Developing and Using Models Use models to describe phenomena.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: K.LS1.C; 2.LS2.A; 4.PS3.A; 4.PS3.B; 4.PS3.D; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B

Showing 1 - 10 of 34 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881